Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Food Res Int ; 175: 113726, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38128987

ABSTRACT

Ovalbumin (OVA) has been considered as a nutrient carrier for bioactive, which has high nutrition value and multiple properties. Recently, proteins-phenolic acids composite delivery systems have received widespread attention. Therefore, this research aimed to investigate the interaction between OVA and cereal phenolic acids (CPA) to establish delivery systems for bioactive. Spectroscopy results have found that CPA generated complexes with OVA, causing the microenvironment changes of OVA. Ferulic acid (FA), p-coumaric acid (CA), vanillic acid (VA), syringic acid (SY), sinapic acid (SI), and protocatechuic acid (PA) not only quenched the intrinsic fluorescence of OVA, but also altered protein microenvironment. Further investigation showed these complexes were formed by static quenching mode, while hydrogen bond and hydrophobic interaction were dominant binding forces. Meanwhile, the interaction decreased α-helix contents and increased ß-sheet contents, leading to conformational changes in OVA. Besides, OVA/CPA complexes displayed an increase in hydrophobicity with a reduce in free-SH. After combination with FA, SY, CA, VA, SI, PA, it was found that all formed complexes had superior solubility, emulsifying and antioxidant activities than native OVA. Among them, OVA-PA exhibited the highest emulsifying activity index and emulsion stability index values (36.4 ± 0.39 m2/g and 60.4 ± 0.94 min) and stronger antioxidant activities. Finally, the combination with phenolic acids further improved the digestion efficiency in vitro of OVA. The OVA-CPA complexes showed improved properties for excellent delivery systems. Overall, OVA-CPA complexes could be a good carrier for bioactive, which provided valuable avenues in target delivery system application.


Subject(s)
Antioxidants , Edible Grain , Ovalbumin/chemistry , Antioxidants/chemistry , Digestion
2.
Food Funct ; 14(22): 10221-10231, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37916290

ABSTRACT

Heat sterilization of dairy products can promote the formation of advanced glycation end products (AGEs), protein oxidation products (POPs) and α-dicarbonyl compounds, which have a significant influence on health due to the close association of these products with diabetes complications. In this study, eight oat phenolic acids were first analyzed for their inhibitory effect against AGEs formation. Due to their strong inhibitory effects and structural differences, caffeic acid (CA) and gallic acid (GA) were further selected to assess their anti-glycosylation mechanisms using spectroscopy, chromatography and molecular docking. CA/GA reduced the production of total AGEs and POPs in various bovine milk simulation models and protected whey proteins from structural modifications, oxidation, and cross-linking. Comparative analyses showed a structure-effect relationship between CA/GA and AGEs inhibition. Oat phenolic acids against AGEs and POPs might be related to the unique bonding of key amino acid residues in whey proteins, the inhibitory role of early fructosamine and the trapping of reactive α-dicarbonyl groups to form adducts. In conclusion, oat phenolic acids might present a promising dietary strategy to alleviate AGEs production and glycation of proteins in dairy products upon storage.


Subject(s)
Avena , Glycation End Products, Advanced , Molecular Docking Simulation , Whey Proteins/analysis , Glycation End Products, Advanced/metabolism , Avena/metabolism , Spectrum Analysis , Chromatography
3.
Crit Rev Food Sci Nutr ; : 1-17, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37552798

ABSTRACT

Citrus polyphenols can modulate gut microbiota and such bi-directional interaction that can yield metabolites such as short-chain fatty acids (SCFAs) to aid in gut homeostasis. Such interaction provides citrus polyphenols with powerful prebiotic potential, contributing to guts' health status and metabolic regulation. Citrus polyphenols encompass unique polymethoxy flavonoids imparting non-polar nature that improve their bioactivities and ability to penetrate the blood-brain barrier. Green extraction technology targeting recovery of these polyphenols has received increasing attention due to its advantages of high extraction yield, short extraction time, low solvent consumption, and environmental friendliness. However, the low bioavailability of citrus polyphenols limits their applications in extraction from citrus by-products. Meanwhile, nano-encapsulation technology may serve as a promising approach to improve citrus polyphenols' bioavailability. As citrus polyphenols encompass multiple hydroxyl groups, they are potential to interact with bio-macromolecules such as proteins and polysaccharides in nano-encapsulated systems that can improve their bioavailability. This multifaceted review provides a research basis for the green and efficient extraction techniques of citrus polyphenols, as well as integrated mechanisms for its anti-inflammation, alleviating metabolic syndrome, and regulating gut homeostasis, which is more capitalized upon using nano-delivery systems as discussed in that review to maximize their health and food applications.

4.
Crit Rev Food Sci Nutr ; : 1-19, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37222572

ABSTRACT

Advanced glycation end products (AGEs), the products of non-enzymatic browning reactions between the active carbonyl groups of reducing sugars and the free amines of amino acids, are largely considered oxidative derivatives resulting from diabetic hyperglycemia, which are further recognized as a potential risk for insulin resistance (IR) and type 2 diabetes (T2D). The accumulation of AGEs can trigger numerous negative effects such as oxidative stress, carbonyl stress, inflammation, autophagy dysfunction and imbalance of gut microbiota. Recently, studies have shown that cereal polyphenols have the ability to inhibit the formation of AGEs, thereby preventing and alleviating T2D. In the meanwhile, phenolics compounds could produce different biological effects due to the quantitative structure activity-relationship. This review highlights the effects of cereal polyphenols as a nonpharmacologic intervention in anti-AGEs and alleviating T2D based on the effects of oxidative stress, carbonyl stress, inflammation, autophagy, and gut microbiota, which also provides a new perspective on the etiology and treatment of diabetes.

5.
Food Chem ; 417: 135861, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-36906946

ABSTRACT

Advanced glycosylation end products (AGEs) are a series of complex compounds which generate in the advanced phase of Maillard reaction, which can pose a non-negligible risk to human health. This article systematically encompasses AGEs in milk and dairy products under different processing conditions, influencing factors, inhibition mechanism and levels among the different categories of dairy products. In particular, it describes the effects of various sterilization techniques on the Maillard reaction. Different processing techniques have a significant effect on AGEs content. In addition, it clearly articulates the determination methods of AGEs and even discusses its immunometabolism via gut microbiota. It is observed that the metabolism of AGEs can affect the composition of the gut microbiota, which further has an impact on intestinal function and the gut-brain axis. This research also provides a suggestion for AGEs mitigation strategies, which are beneficial to optimize the dairy production, especially innovative processing technology application.


Subject(s)
Gastrointestinal Microbiome , Milk , Animals , Humans , Glycation End Products, Advanced/metabolism , Maillard Reaction , Milk/metabolism , Dairy Products
6.
Crit Rev Food Sci Nutr ; : 1-22, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36803106

ABSTRACT

Ovalbumin (OVA) is the most abundant protein in egg white, with excellent functional properties (e.g., gelling, foaming, emulsifying properties). Nevertheless, OVA has strong allergenicity, which is usually mediated by specific IgE thus results in gut microbiota dysbiosis and causes atopic dermatitis, asthma, and other inflammation actions. Processing technologies and the interactions with other active ingredients can influence the functional properties and allergic epitopes of OVA. This review focuses on the non-thermal processing technologies effects on the functional properties and allergenicity of OVA. Moreover, the research advance about immunomodulatory mechanisms of OVA-mediated food allergy and the role of gut microbiota in OVA allergy was summarized. Finally, the interactions between OVA and active ingredients (such as polyphenols and polysaccharides) and OVA-based delivery systems construction are summarized. Compared with traditional thermal processing technologies, novel non-thermal processing techniques have less damage to OVA nutritional value, which also improve OVA properties. OVA can interact with various active ingredients by covalent and non-covalent interactions during processing, which can alter the structure or allergic epitopes to affect OVA/active components properties. The interactions can promote OVA-based delivery systems construction, such as emulsions, hydrogels, microencapsulation, nanoparticles to encapsulate bioactive components and monitor freshness for improving foods quality and safety.

7.
Food Funct ; 13(24): 12686-12696, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36398593

ABSTRACT

Increasing evidence has confirmed that whole grain oats are effective in regulating hyperlipidemia. However, which specific ingredient is crucial remains unclear. This study focused on which whole grain components, oat phenolic compounds (OPC) or oat ß-glucan (OBG), can regulate lipid metabolism and gut microbiota. The experiment unveiled that OPC and/or OBG not only reduced the body weight and fasting blood glucose (FBG) but also regulated serum and hepatic lipid levels in high-fat-diet (HFD) fed mice. There was no significant difference in the regulatory effects of OPC and OBG (p > 0.05). The combination of OPC and OBG (OPC + OBG) significantly decreased the body weight (p < 0.01) and reduced the blood glucose (p < 0.01) and lipid profile levels (p < 0.01). The real-time quantitative PCR (RT-qPCR) study revealed that OPC + OBG significantly altered mRNA expression related to lipid metabolism. Histopathological analysis showed that OPC + OBG improved liver lipid deposition as well as liver oxidative stress (p < 0.05). In addition, OPC + OBG combination regulated the gut microbiota community phenotype and increased probiotics. OPC + OBG significantly increased the abundance of Bacteroidetes and reduced the abundance of Firmicutes (p < 0.05) compared with the OPC and OBG fed mice. In conclusion, OPC + OBG has a synergistic effect in alleviating hyperlipidemia via lipid metabolism and gut microbiota composition. This finding also provided a potential justification for the advantages of whole grains in preventing hyperlipidemia.


Subject(s)
Hyperlipidemias , beta-Glucans , Mice , Animals , Avena/metabolism , Whole Grains , Blood Glucose/metabolism , Hyperlipidemias/drug therapy , Diet, High-Fat/adverse effects , beta-Glucans/pharmacology , Lipid Metabolism , Lipids , Body Weight , Mice, Inbred C57BL
8.
J Agric Food Chem ; 70(33): 10075-10089, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35968926

ABSTRACT

Lactoferrin (LF) is a naturally present iron-binding globulin with the structural properties of an N-lobe strongly positively charged terminus and a cage-like structure of nano self-assembly encapsulation. These unique structural properties give it potential for development in the fields of electrostatic spinning, targeted delivery systems, and the gut-brain axis. This review will provide an overview of LF's unique structure, encapsulation, and targeted transport capabilities, as well as its applications in immunity and gut microbiota regulation. First, the microstructure of LF is summarized and compared with its homologous ferritin, revealing both structural and functional similarities and differences between them. Second, the electrostatic interactions of LF and its application in electrostatic spinning are summarized. Its positive charge properties can be applied to functional environmental protection packaging materials and to improving drug stability and antiviral effects, while electrostatic spinning can promote bone regeneration and anti-inflammatory effects. Then the nano self-assembly behavior of LF is exploited as a cage-like protein to encapsulate bioactive substances to construct functional targeted delivery systems for applications such as contrast agents, antibacterial dressings, anti-cancer therapy, and gene delivery. In addition, some covalent and noncovalent interactions of LF in the Maillard reaction and protein interactions and other topics are briefly discussed. Finally, LF may affect immunological function via controlling the gut microbiota. In conclusion, this paper reviews the research advances of LF in electrostatic spinning, nano self-assembly, and immune and gut microbiota regulation, aiming to provide a reference for its application in the food and pharmaceutical fields.


Subject(s)
Gastrointestinal Microbiome , Lactoferrin , Drug Stability , Immunologic Factors , Lactoferrin/chemistry , Static Electricity
9.
J Agric Food Chem ; 70(21): 6300-6316, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35578738

ABSTRACT

Hydrogels obtained from natural polymers have received widespread attention for their excellent biocompatible property, nontoxicity, easy gelation, and functionalization. Polysaccharides can regulate the gut microbiota and improve the intestinal microenvironment, thus exerting the healthy effect of intestinal immunity. In an active substance delivery system, the extent and speed of the substance reaching its target are highly dependent on the carrier. Thus, the smart active substance delivery systems are gradually increasing. The smart polysaccharide-hydrogels possess the ability in response to external stimuli through changing their volume phase and structure, which are applied in various fields. Natural polysaccharide-based hydrogels possess excellent characteristics of environmental friendliness, good biocompatibility, and abundant sources. According to the response type, natural polysaccharide-based hydrogels are usually divided into stimulus-responsive hydrogels, including internal response (pH, temperature, enzyme, redox) and external response (light, electricity, magnetism) hydrogels. The delivery system based on polysaccharides can exert their effects in the gastrointestinal tract. At the same time, polysaccharides may also take part in regulating the brain signals through the microbiota-gut-brain axis. Therefore, natural polysaccharide-hydrogels are considered as promising biomaterials, which can be designed as delivery systems for regulating the gut-brain axis. This article reviews the research advance of stimulus-responsive hydrogels, which focus on the types, response characteristics, and applications for polysaccharide-based smart hydrogels as delivery systems.


Subject(s)
Biocompatible Materials , Hydrogels , Biocompatible Materials/chemistry , Drug Delivery Systems , Hydrogels/chemistry , Polymers/chemistry , Polysaccharides/chemistry , Temperature
10.
Food Chem ; 385: 132697, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35306236

ABSTRACT

This study developed a sensitive and easy method to directly analyze Nε-(carboxymethyl)lysine (CML) by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Acetonitrile and water were used as the binary mobile phase without ion pair reagents, while BEH Amide column was applied to detect CML. The target substance without derivatization could be well retained and separated after the pretreatment conditions were optimized. Oasis MCX solid phase extraction (SPE) cartridge showed the best recovery rate of CML 96.7 % and purification ability among the tested SPE cartridges. There was no obvious difference in pretreatment abilities with or without protein precipitation on the CML quantitative analysis. The recovery rates 97-98 % for CML were achieved by UPLC-MS/MS, as well as the detection limit and quantification limit were 0.05 mg/kg and 0.15 mg/kg sample, respectively. This method was suitable for quantifying CML content with high recovery rate and low detection and quantification limit in sterilized milk.


Subject(s)
Milk , Tandem Mass Spectrometry , Animals , Chromatography, High Pressure Liquid , Chromatography, Liquid , Indicators and Reagents , Isotopes , Lysine/analogs & derivatives , Solid Phase Extraction
SELECTION OF CITATIONS
SEARCH DETAIL
...